The BAsSAS Architecture For Semantic Web Annotations

Valentin Zacharias
ontoprise GmbH
Amalienabdstr. 36 (Raumfabrik 29)
76227 Karlsruhe, GERMANY

zach@ontoprise.de

ABSTRACT

We describe a generic architecture for the (semi-automatic)
creation, storage and querying for annotations of web re-
sources. Our BAsAS architecture uses recent advances from
the Semantic Web and Web 2.0 communities to make Se-
mantic Web annotations a reality. The BAsAS architecture
makes it easy for users to start to annotate and easy for
developer to use the annotations that get created.

Besides describing the general architecture we will also detail
an implementation of this architecture build for a Semantic
Web community portal.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

1. INTRODUCTION

The Semantic Web is the vision of having data on the web
defined and linked in such a way, that it can be used by
machines not just for display purposes, but for integration,
automation and reuse of data across various applications.

An Annotation is a piece of information or knowledge entity
that is associated with a document or part therof. The com-
bination of these two research strands is often understood as
Semantic Annotation - annotating documents using seman-
tic technologies. Usually this means creating links between
the content of the document and entities in an ontology. In
this paper, however, we focus on Semantic Web Annotation,
understood as annotations of web resources with the goal of
lifting them into the semantic web. Unstructured content
outside of the semantic web is annotated and these anno-
tations become part of the Semantic Web. In this way (a
part of) the content of the document becomes part of the
Semantic Web, the document gets woven into the Semantic
Web. Research that understands Semantic Web Annota-
tions in this way must discuss the question of how the data

created in the annotation process becomes part of the Se-
mantic Web, how it is retrievable and usable for computer
agents.

A third (but very uncommen) way to understand the combi-
nation of these two research threads is Semantic Web Anno-
tation as the annotation of Semantic Web resources. Even in
a future where the web consists only of structured, semantic
content there is still room for annotations. For example a
rule set on the web may be annotated with a remark that
it is outdated or an music ontology with links to other on-
tologies that extends it with more detail for parts of the
musical spectrum. We do not specifically discuss this inter-
pretation, but many of the techniques described here could
be applicable there as well.

2. EARLIER WORK

Of direct interest to this paper are only those approaches
that take the same holistic view of Semantic Web Annota-
tions. Approaches that deal with the question of Semantic
Annotation as well as how this annotation then becomes
part of the Semantic Web. We will not further discuss those
approaches that focusses on the details of automatic and

semi-automatic Semantic Annotations (e.g. [9][16][4][11][22][5]).

We also omit the discussion of all approaches that use em-
bedded annotation. While embedded annotations may play
some role in the Semantic Web, they cannot form the foun-
dation for lifting large amounts of already existing docu-
ments into the Semantic Web. Embedded annotations al-
ways require that the person or system doing the annotation
has some means of changing the original document - this is
just not the case for all but a tiny part of the internet. The
web as it exists today usually reserves write privileges to a
very small group.

2.1 The KIM- Semantic Annotation Platform
The KIM-Semantic Annotation Platform[15][14] is a system
for the automatic semantic annotation of web documents,
the indexing of these and their retrieval. The creators of
KIM understand Semantic Annotations as links from enti-
ties in a text to their semantic descriptions. The semantic
descriptions are organized with respect to a lightweight up-
per level ontology - the KIM Ontology KIMO. This ontol-
ogy is prepopulated with entities extracted using an adabted
version of the GATE[7] toolkit from large publicly available
data sources. All annotations are stored on the KIM server.
The primary interface to the KIM server is a browser plu-
gin for the Internet Explorer. A user who has installed this

plugin can request an annotated version of the page she is
currently visiting. The page is send to the server, automat-
ically annotated and displayed with the all entities as links.
The user can then use the plugin to learn more about the
entities, browse the populated ontology and explore docu-
ments that where indexed earlier.

2.2 The Annotea RDF Infrastructure

Annotea[13][17] is a web-based system for shared annota-
tions. Annotations are understood as RDF statements made
by an author about a web page. These annotations are not
embedded in the pages but stored in one or more exter-
nal annotation servers. The authors of the system tried to
make it as open as possible by relying on standards such as
XPointer, RDF and HTTP for all data and interfaces of the
system. The annotation servers accept new data that is sub-
mitted using a simple HTTP POST call to an annotation
server, the new annotation data is submitted as RDF data
at the same time. Annotea also defines a simple format for
retrieving annotation data from an annotation server. The
protocol for doing this is only partially defined, everything
beyond requesting all annotations for a specific url is left to
the creators of individual annotation servers.

Recently[17] the Annotea infrastructure has been adapted
for the management of shared bookmarks. The main change
is the extension of the annotation schema, in particular the
inclusion of the notion of a topic hierarchy. The interface for
this infrastructure allows to define a semi-formal hierarchy
of the topics of interest and to associate bookmarks with
these topics.

Quite a few applications that use the annotatea infrastruc-
ture have been created. The best known is propably the
Annotea implementation included in the w3c Amaya[l] web
browser / editor that allows to create and view annotations.
Annorzilla[3] and Annotea Ubimarks[2] are plugins for the
Mozilla /Firefox browsers that work with the Annotea RDF
infrastructure. Of these the Ubimarks plugin ist more ca-
pable, allowing to create a topic hierarchy and to annotate
web documents with respect to it.

2.3 Contribution

What we are trying to do is similar to the Annotea infras-
tructure: define an architecture that can form the backbone
for Semantic Web annotations. We, however, improve on the
well known Annotea idea in three crucial points: we show
how the SPARQL language solves the problem of queries
for annotations. We demonstrate how AJAX can be em-
ployed to build an annotation tool that is more lightweight
and less browser dependent than anything that exists for
Annotea. Finally we show a simple architecture that allows
semi-automatic annotation while still retaining the extrem
lighweight property of the annotation tools. To a large part
this paper can be understood as an attempt to update the
ideas pioneered by annotea using technology that was not
available at the time it was initially conceived.

3. ARCHITECTURE

The BAsAS architecture is so named for its main character-
istics: Browser, Annotation server, AJAX and SPARQL.
These parts and their interaction are shown in Figure 1. At

the core of the architecture is a Semantic Web data store
that holds the annotations and that offers a SPARQL inter-
face to access them. It should also offer an HTML interface
for browser based access.

Annotations are done by the user with the help of an AJAX
interface to an annotation server. This annotation server
helps to keep the client side of the annotation as lighweight
as possible, in particular any complex algorithms for auto-
matic annotation are run on this server. The annotation
server is also responsible for receiving the information from
the annotation interface and translating it into update re-
quests for the data store. Only with the help of such a server
component is it possible to build an extrem lightweight an-
notation component.

The annotation component needs some way to establish the
context it is called in for this gives the information on what
the user wants to annotate. This context can be estab-
lished by a lighweight browser “plugin”. As we will see this
needs not be an actual browser plugin. A short snippet of
JavaScript that browsers treat like a bookmark is sufficient
in many cases. We will also show that sometimes not even
that is necessary.

3.1 SPARQL

We understand Semantic Web Annotation as lifting docu-
ments into the Semantic Web by adding semantic data about
them to the Semantic Web. As we argued in the introduc-
tion this means that we have to find a way to make the
annotated data available to agents using the Semantic Web.
Both Annotea and KIM address this question by offering in-
terfaces to the server storing the annotations. At the same
time, however, both approaches use non-standard query in-
terfaces. Annotea does define a very simple query syntax
that relies mostly on RDF, but the possible queries are ex-
tremly limited. For example it does not allow to ask the
data store for all topics used in the annotations. Vendors of
Annotea data stores may offer more sophistictad query func-
tionality but this is not standartized. All in all this means
that agents utilizing the Semantic Web will need some kind
of custom build wrappers to access the annotation data in
these systems.

SPARQL, the SPARQL Protocol[6] And RDF Query Lan-
guage[20], defines how clients can pose queries to an RDF
store. In the short time since its inception it has already gar-
nered a great deal of attention and has been implemented
for a large number of RDF stores. Even though still only a
W3C candidate recommendation SPARQL looks set to be-
come the Semantic Web query language for the foreseeable
future. With this SPARQL is also the best candidate for
a query language for Semantic Web annotation stores: al-
most all agents using Semantic Web data will be able to
use SPARQL and can then automatically access the anno-
tated data. SPARQL is also powerful enough to support all
realistic queries for annotations.

3.2 AJAX

AJAX, shorthand for Asynchronous JavaScript and XML, is
a technique for the development of web applications. Through
the use of AJAX it is possible to create web applications that
“feel” like applications that run directly on the client com-
puter. AJAX web applications are web pages that heavily
utilize JavaScript to exchange small amounts of data with

User
(Browser)

~ .
"Plugin”

AJAX Interface

e
SPARQL HT[\ML_I

Annotation Server

SW Data Store

Figure 1: High level view of the BAsAS architecture

the server and to change the page structure. AJAX pages
can respond to a user action, update data on the server and
change the display based on the servers respone all without
requiring the user to reload the page. Compared to other
technologies for the creation of rich clients - like Flash or
Java Applets - AJAX has the advantage that JavaScript
is supported by virtually all browsers on all platforms. It
also works without the installation of any plugins, has a
short startup time and integrates seamlessly with HTML.
With the recent development of AJAX libraries such as the
GoogleWebToolkit[10], Rico[21] or the Yahoo UI Library|[23]
it is now easily possible to create AJAX applications that
work accross a large number of browsers.

% hitp:Hdel.icio.us - del.icio.usfvzach - Mozilla Firefox

a" del.icio.us

urt tip#ideveloper yahao comjvuil
description [Yahoa! Ul Library

notes

space
tags ol separated

aicard (1)

aircratt (1)

Figure 2: A simple AJAX interface used for
web annotation (from the social bookmarking site
del.ico.us)

By using the AJAX technology it is now possible to cre-
ate productive annotation interfaces that the user can use
directly in her browser and that do not require any installa-
tion. Unlike normal webpages AJAX interfaces can support
the user for example with auto completetion of topics or effi-
cient ways to add multiple topics. The usefullness of AJAX
for annotation is also evident from the AJAX interfaces used
by many of the successfull tagging and social bookmarking
pages (see Figure 2 for an example).

3.3 Browser Integration

The recent success of web based bookmarking and social
bookmarking sites such as del.ico.us shows that a large num-
ber of web users is willing to annotate if its just simple

enough. All of these sites integrate the annotation into the
browser. As the main tool that is used to interact with the
web, the browser is the logical choice for the integration of
an web annotation program. Most sites also try to make
starting to annotate as simple as possible many not even
requiring the installation of a browser plugin.

Windows Live in a state of paralysis?
Surely not...

DIGG THIS!K

7 [T - . Miall Kennedy, the RSS guy at
ui J WlndOWS Live Microsoft (since April 2006 anyway),

has announced he's leaving Microsoft. One passage in particular from
his blog post caught my attention:

"Windows Live is under some heavy change, rearganization,
pullback, and general paralysis and unfortunately my ability
to perfarm, hire, and execute was completely frozen as
well."

Figure 3: The “digg this” button at this webpage
allows a simple annotation of the webpage without
any installation of annotation tools in the browser

Is is obvious that an annotation program needs some infor-
mation about the document the user wants to annotate. Its
possible but inconvenient to ask the user to supply this in-
formation in a web form, hence necessary to retrieve it auto-
matically. To extract this context from the user the annota-
tion infrastructure needs some integration with the browser.
A lightweight method to achieve this without requiring the
installation of a plugin are bookmarklets. A bookmarklet is
a short snippet of JavaScript that is handled by the browser
like a normal html link. It can be saved just like other links
into the favorites or bookmarks. When selected the browser
executes the JavaScript that then extracts some information
about the page currently viewed and calls the annotation in-
terface with this information. The bookmarklet can retrieve
for example the url of the website the user looks at and the
text that is currently selected. At least for simple annota-
tion schemes this is enough to characterize what the user
wants to annotate.

The bookmarklet passes the information to the annotation
interface by appending http get parameters to the url of
the annotation page. This means that all the context infor-
mation needed for a simple annotation can be encoded in
a HTML link. A creator of a webpage that is interested in
having it annotated by its visitors can therefore include such
a link that already defines the current page as the annotated
document. Figure 3 shows an example of such a link to the
annotation page of the social bookmarking site digg]8].

3.4 Annotation Server

The exclusive reliance on very thin clients for annotation
means that more sophisticated functionality - such as semi-
automatic annotation or interfaces for arbitary rdf stores - is
harder to realize. While it is possible to realize this kind of
functionality in JavaScript directly embedded in an AJAX
page, it is costly and would result in bad usability. It would
be costly because many of the libraries that could aid the
creation of such functionality are not available in JavaScript.
Usability problems arise because all the code needed for
the functionality must be tranferred to the browser and be
parsed there, resulting in loading times that are too long for
a “lightweight” annotation tool.

To combine sophisticated annotation functionality with a
very lightweight annotation client we propose an annotation
server that supports the AJAX interface during the annota-
tion process. This annotation server can fetch the site that
is currently annotated, run algorithms to automatically per-
form an automatic annotation that is shown to the user in
the client interface. In the end the annotation server accepts
the completed annotation and handles the communication
with the data store.

3.5 Annotation Process

To illustrate how the pieces of the BAsAS architecture fit to-
gether, we detail what happens during one annotation trans-
action.

1. With her browser the user discovers a webpage that
she wants to annotate. She clicks on the bookmarklet
that she bookmarked earlier.

2. The JavaScript of the bookmarklet is interpreted by
the browser. It extracts the url of the current page
and the text that is currently selected. It opens the
annotation interface in a new browser window. The
url and the selected text are passed as parameters.

3. The annotation server receives the request for the an-
notation transaction. It creates a new server side an-
notation task and serves the files for the annotation
interface. In a seperate thread it starts to fetch the
website that should be annotated and then runs any
available algorithms for the automatic annotation.

4. The browser receives the annotation client and starts
interpreting its JavaScript code. The annotation client
immediatly ask the annotation server for data that
could help the user perform the annotation. This could
be data about other annotations by the same user or
annotations of other users for the same resource. The

client also request the result from the automatic anno-
tation. These request are done asynchronous, meaning
the interface stays responsive and the user can start
annotating.

5. The annotation server accesses the data store to fetch
the requested data about earlier annotation. This is
send to the client. As soon as the current document is
fetched and annotation proposals have been created,
these too are send to the client.

6. The client receives the information about the earlier
annotations and updates the interface. The results
from the automatic annotation are also received and
displayed as proposals.

7. The user adds any information she wants, accepts or
declines the annotation proposals and presses “save”.

8. The annotation server receives the annotation data
from the client and contacts the data store to save
them.

After the annotation data has been saved in the data store
in can be accessed by any agents capable of SPARQL or via
a web interface.

4. UNITRACC COMMUNITY PORTAL

We are currently implementing the architecture described in
the preceeding chapter for the use in the system unitracc.

Unitracc, the “Underground Infrastructure Training and Com-
petence Center” is a internet based e-learning system for the
area of canalization. Unitracc also contains a collection of
web based tools that help public authorities manage and
monitor underground infrastructure. The system already
contains a large number of information units, especially en-
hanced digital versions of two standard textbooks about
canalization. Unitracc is developed by the company Prof.
Dr. Ing. Stein & Partner GmbH, a leading engineering firm
whose founder is also the author of many standard works
of technical literature. The development has been funded
in part by the German Federal Ministry of Education and
Research. Access to unitracc is available on a subscription
basis, the target audience ranges from beginning trainees
and their teachers to architects.

We are currently in the process of extending this platform in
the direction of a community portal. In addition to the core
content supplied by the creators of unitracc there should be
an outer layer of user created content, such as comments,
technical manuals uploaded by tool vendors or annotations
of web sites. We expect this layer of content to be less
reliable but also to be more current and diverse. We chose
to build the this part of the platform as open as possible: we
believe that the openness increases the motivation of people
to contribute. We hope that people will be less reluctant to
put effort into a commercial site when they know that this
content can be used by everyone.

4.1 Unitracc Metadata Structure
The metadata structure was developed based on ideas from
Metadatastandards like LOMJ18], or IMS[12] and strived

User
(Browser)

v

Servlet

Unitracc Server

Search Index

Figure 4: Overview of the Unitracc annotation architecture

to be compatible to the LOM/SCORM][19] standard which
wasn’t finalized at the time the unitracc architecture was
developed. The metadata for content entities fall into three
different categories:

1. Metadata for internal administration, like versioning
information or size and format of multimedia data.

2. Didactic metadata allows to associate information with
areas of interest, occupation groups and the learning
level of the user. For example didactic metadata clas-
sifies an infobit according to its difficulty, area of inter-
est (occupational safety, law, environment) and kind
of information (calculation, history, construction site
picture..).

3. Content metadata describe the actual content of a con-
tent entity. Content metadata consist of a topic from
a topic hierarchy contain roughly one hundred topics.

During the annotation of web resources only the content
part of the metadata is assigned by the user - everything
else is trivially determined from the fact that it is an user
generated annotation of a web resource. The topic hierarchy
can be changed using the AXAJ interface shown in Figure
5. Changes to the topic hierarchy are currently meant to be
done only be the administrators of unitracc.

4.2 Unitracc Annotation Architecture

Figure 4 shows a high level overview of the Unitracc an-
notation architecture. We will quickly discuss the points in
which it differs from the architecture shown in Figure 1. The
most obvious change is that the annotation server and the
data store are now part of the same server. This is owed
to the fact that we are not dealing with a generic Semantic
Web data store but a domain specific one for this applica-
tion. Since the annotation server is also not very generic but
tailored for this application it was just simpler to combine
the two. Another difference is that for historical reasons
the data store is not one homogeneous database but that it
consists of three major parts:

1. A database for all content entities of unitracc. This is a
MySQL database, storage and retrieval of the entities
is managed by Hibernate.

2. A Lucene index of most content entities for quick re-
trieval.

3. A database that stores the topic hierarchy. This is the
newest addition to the system. Currently Hibernate is
used to store the taxonomy in a HSQLDB database.

Because neither of the unitracc data stores is a RDF store
we have no automatic support for SPARQL and have cur-
rently only implement a small subset - hence the dashed
lines around the SPARQL interface in Figure 4.

D http:/flocalhost: BOBO - Annotate - Mozilla Firefox

CEX

SRR e i

Annotate

http: fiwnwne. bibsonomy. org/search/Instructional+ana. ..

Title: BibSonormy:search:"Instructional Manage

Topics: Elaktrisch|

Elekirische Leckortung

]

[cancel

Warkstoffe
Einragender Dichtring

remoyve

Done Q] Open Motebook | Adblack

Figure 6: The unitracc annotation interface

The annotation servlet is the server side component for the
annotation interface. The annotation servlet fetches all sites

< N TAN
Taxonomy Il Annotate I
+ Fahrzeuge Edit C
it Concept
+ Gerite P
+ Bauwerke =
arz

= Werkstoffe

+ Stahl Wunden an der FPflanze. Siehe hierzu: Naturharz. #

- Harz) : : : -)

) Im industriellen Bereich wird haupts&chlich
Vinylesterharz kiinatliches Harz verwendet, welches als
Polyestetharz Epoxidharz bezeichnet wird und zu den s

Funststoffen z&hlt. Siehe hierzu: Kunstharz. hd
tauermerk
+ Steinzeuy Synonyms
+ Kunststoff
Harz
+ Beton kunststoffgebunden
Glasfaserverstirkter Kunststoff
+ Beton zementgebunden
+ 5uss
+ Produkte H add][remove]
+ “erfahren
.) Superconcepts
+ Weiteres Topicss
Werkstoffe

Wasserinfiltration
Wurzelainwuchs
Weiteres Topicss

add rErnove

Figure 5: AJAX editor for the unitracc topic hierarchy

that are currently annotated by the user and uses a simple
automatic categorization to identify suitable topics.

4.3 Annotation

Users of the site will be encouraged to annotate the web re-
sources relavant to unitracc using a simple annotation tool.
For the time beeing we have settled on a very simple anno-
tation format: the annotation is always for the whole web
page and it only consists of “has topic” relations to the top-
ics from the unitracc topic hierarchy. The integration of
the annotation tool with the browser is done with a book-
marklet as described earlier. The annotation interface is
realized with AJAX, it supports the user mainly by offering
auto complete for the topics. It also receives the proposals
from the automatic categorization performed by the anno-
tation servlet and displays them to the user. A screenshot
of the annotation interface is shown in Figure 6. The an-
notation interface, like the topic hierarchy editor, is created
using the Google Web Toolkit[10].

S. CONCLUSIONS AND FUTURE WORK

We have presented the architecture of a Semantic Web an-
notation architecture. We belive that systems build in this

image could form the foundation for Semantic Web annota-
tions. These systems could be lightweight, easy to use and
powerfull at the same time.

We have given a short overview our implementation in progress
of such a system for a domain specific community portal.
The system shows great promise but is still only a proto-
type. Next steps for this system are the implementation of
better SPARQL support, access controls and general stabil-
ity and scalability issues.

One serious issue that has already emerged in our work with
this system is that in some cases the annotation server can-
not retrieve that page the user tries to annotate. This may
be because the page requires some kind of login, needs values
in a cookie that have been set before or is based on frames.
The user can still annotate such an url, but she will not
get any annotation proposals. It is propably not possible to
completely solve this issue without recourse to browser plug-
ins. Creating these, however, is not an option in this context
since unitracc just lacks the resources to build plugins for
many different browsers.

6.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Minsitry of Education and Resarch under the ksi_underground
project.

7.
1]

2]

3]
[4]

B

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES
Amaya home page, http://www.w3.org/amaya.

Annotea ubimarks homepage,
http://www.annotea.org/mozilla/ubi.html.

Anorzilla home page, http://annozilla.mozdev.org/.

S. Chapman, A. Dingli, and F. Ciravegna. Armadillo:
Harvesting information for the semantic web. In
Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2004.

P. Cimiano, S. Handschuh, and S. Staab. Towards the
self-annotating web. In WWW ’04: Proceedings of the
13th international conference on World Wide Web,
pages 462-471, New York, NY, USA, 2004. ACM
Press.

K. G. Clark. Sparql protocol for rdf. Technical report,
W3C, 2006.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. Gate: A framework and graphical
development environment for robust nlp tools and
applications. In Proceedings of the 40th Annual
Meeting of the ACL, 2002.

Digg, http://digg.com/.

S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,

A. Jhingran, T. Kanungo, S. Rajagopalan,

A. Tomkins, J. A. Tomlin, and J. Y. Zien. Semtag and
seeker: bootstrapping the semantic web via automated
semantic annotation. In WWW ’03: Proceedings of the
12th international conference on World Wide Web,
pages 178-186, New York, NY, USA, 2003. ACM
Press.

Google web toolkit,
http://code.google.com/webtoolkit/.

S. Handschuh, S. Staab, and F. Ciravegna. S-cream -
semi-automatic creation of metadata. In Proceedings
of the EKAW 2002, pages 358-372, 2002.

Ims (instructional management systems) project from
educause. http://www.imsproject.org/.

J. Kahan and M.-R. Koivunen. Annotea: an open rdf
infrastructure for shared web annotations. In WWW,
pages 623-632, 2001.

A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov,
A. Kirilov, and M. Goranov. Semantic annotation,
indexing, and retrieval. In International Semantic
Web Conference, pages 484499, 2003.

A. Kiryakov, B. Popov, I. Terziev, D. Manov, and
D. Ognyanoff. Semantic annotation, indexing, and
retrieval. J. Web Sem., 2(1):49-79, 2004.

(16]

(18]

(19]

(20]

(21]

22]

23]

P. Kogut and W. Holmes. Aerodaml: Applying
information extraction to generate daml annotations
from web pages. In Proceedings of the First
International Conference on Knowledge Capture
(K-CAP 2001), 2001.

M.-R. Koivunena, R. Swick, and E. Prud’hommeaux.
Annotea shared bookmarks. In Proceedings of the
KCAPO3 workshop, 2003.

Ieee learning technology standardization
committee,draft standard for learning object
metadata, 2001.

Adl sharable courseware object reference model, scorm
http://www.adlnet.org/.

E. Prud’hommeaux and A. Seaborne. Sparql query
language for rdf. Technical report, W3C, 2006.

Rico javascript for rich internet applications,
http://openrico.org/.

M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. Mnm: Ontology driven
semi-automatic and automatic support for semantic
markup. In EKAW, pages 379-391, 2002.

Yahoo ui library, http://developer.yahoo.com/yui/.

