
Exploiting Usage Data for the Visualization of Rule Bases

Valentin Zacharias1 and Imen Borgi1

FZI: Research Center for Information Technologies, Karlsruhe 76131, Germany,
{zacharias, borgi}@fzi.de

Abstract. Recent developments have made it clear that the Semantic Web will not only consist of
RDF data and OWL ontologies but also of knowledge formulated as rules, hence the visualization
of rules will also be an important part of user interfaces for the Semantic Web.

In this paper we describe novel ideas and their prototypical implementation for the visualization of
rule bases. In the creation of the visualization our approach considers not only the structure of a
rule base but also records of its usage. We also discuss the challenges for visualization algorithms
posed by rule bases created with high level knowledge acquisition tools. We describe the methods
we employ to deal with these challenges.

1 Introduction

1.1 The Semantic Web, Rules and their Visualization

Envisioned as a central part of the Semantic Web since its early days [5][11][22][7] rule languages lately
received more attention . It has even been argued that the Semantic Web stack should be changed to give
rules a more prominent role, putting rule languages on an equal footing with OWL[19]. Even though the
exact definition of a Semantic Web rule language is still subject of much debate [18][4][2], it seems certain
that rule languages will soon become an important pillar of the Semantic Web. Its is also safe to say that
exchanging rule models on a global scale will increase the need for tools that help people understand rule
bases. Sharing and adapting - main mottos of the Semantic Web - are all but unthinkable without tools
that aid people in understanding the rule bases they should reuse. For these reason we see a renewed
need to visualize rule bases.

F-logic, the rule based language used throughout this paper, is not one of the main contenders to
become the Semantic Web rule language. It is, however, very similar to many approaches under discussion
- so most of the things discussed in this paper can easily be adapted to these other rule languages. For
our work F-logic had the advantage of the availability of two mature inference engines [8][29] and the
ontology engineering environment Ontostudio. Furthermore, we believe that the problems related to
knowledge bases created with high level visual editors discussed in this paper will appear in many cases
where modern rule editors get created and used to construct knowledge bases.

1.2 Motivation for this Work

A good visualization of a rule base should quickly convey its meaning. It should enable the user to
understand the scope of the rule base and point her to the central parts. It should enable the user to
asses the suitability of a rule base for a particular task. It could support the user in evaluating the quality
of the rule base and could aid her in correctly executing changes to it. The visualization should only



II

display important information, it should not confuse the user with details she doesn’t need to know to
achieve the goals described above.

We found simple visualization approaches to fail by these criteria. In particular visualizing rules
without considering their usage led to the display of many ‘”phantom” dependencies between rules.
While these dependencies existed in theory, we knew that a meaningful knowledge base would never
include the facts that would make them relevant. Displaying these dependencies could make sense in a
debugging or validation scenario - but it only confuses when the goal is to explain the rule base. This
proved to be a big problem since these connections often outnumber the important dependencies by far.

Another problem occurred when high level knowledge engineering tools where used to create (parts)
of the knowledge base. The content the user creates with these tools is translated into the logic language
before any inference takes place. In our system this is even a two step translation: first the graphical
representation is translated into F-logic, then F-logic is transformed into a logic program in normal
logic. The use of such tools makes visualizing a knowledge base more difficult because there may be a
considerable difference between the contents of the knowledge base and the entities the user works with
and knows about.

1.3 Our Approach

The approach we are proposing utilizes usage information of the knowledge base as information source to
identify the relative importance of rules and typical interaction patterns among them. We also use meta
knowledge about the structure of the knowledge base to hide low level details from the user.

This paper starts with an introduction to F-logic and a discussion of what we understand as usage
data of a (F-logic) knowledge base. We then describe a simple example rule base that we will use to
illustrate our ideas in the rest of the paper. We continue with a discussion of the challenges posed by
high level tools for the creation of knowledge bases. We then show a baseline visualization of our example
knowledge base and describe the steps our system takes to transform this into a better representation.
We conclude with a discussion of related work and possible directions for further research.

2 Preliminaries

2.1 F-logic

F-logic[20] or Frame Logic was developed as an object oriented approach to first order logic. It defines
syntax and semantic of an object oriented deductive database. Main features of F-logic include object
identity, complex objects, inheritance, polymorphic types, query methods and encapsulation. F-Logic has
a sound and complete resolution based proof theory. A number of F-logic implementations exist that,
while having much in common, still differ in crucial details. Hence it is important to note that for this
paper we use the F-logic implementation by Ontoprise. Discussing the differences to the other versions
is beyond the scope of this publication.

In this paper we will only present and explain a short F-Logic example adopted from [1], readers
interested in learning more about F-logic may consult [3][20][1][12].

/* facts */
abraham:man.
sarah:woman.
isaac:man[father->Abraham; mother->sarah].



III

/* rules */
FORALL X,Y,

X[son->>Y]
<-
Y:man[father->X].

FORALL X,Y,
X[son->>Y]
<-
Y:man[mother->X].

/* query */
FORALL X,Y <-X:woman[son->>Y[father->abraham]].

The first part of this example consists of a set of facts to indicate that some people belong to the
classes man and woman respectively. The first section also gives information about the father and mother
relations between them. According to the object-oriented paradigm, relationships between objects are
modelled by method applications, e.g. applying the method father to the object Isaac yields the result
object Abraham. The rules in the second part of the example derive new information from the given
object base. Evaluating these rules in a bottom-up way, new relationships between objects, denoted by
the method ”son” are added to the object base. In English the first rule reads: for all objects X and Y,
X has the son Y, if Y is a man and his father is X. The third part of the example contains a query to the
object base. It asks about all women and their sons, whose father is Abraham.

Before their evaluation F-logic programs are transformed into normal logic programs (horn logic with
negation) with function symbols. The details of this transformation are beyond the scope of this paper
(the interested reader may consult [3][20]). It is sufficient to say that this process may replace F-logic
rules with more than one internal rule. Even more importantly, some core features of the language (e.g.
everything related to inheritance) are realized by adding a number of rules to the knowledge base. These
axioms are not directly visible to users of F-logic but still central to its working.

2.2 Normal Logic Programs

A normal logic program is a finite set of rules of rules. The rules are of the form

p(A)← q(B),not r(C, d)

The part to the left of the ← symbol is the goal or head of the rule, the part to the right the body or
subgoals. The head of the rule consists of one atom, the body of a conjunction of literals. The arguments
of the predicates that make up head and body of the rule are called terms. Variables and constants as
well as function symbols with terms as arguments are terms. A term without arguments is called a ground
term. A rule A is said to be dependent on another rule B when an atom from the body of A unifies with
the head atom of B. A atom unifies with another atom when the predicate symbol is identical and all
their argument terms unify. A term unifies with another term when:

– the top function symbols are identical and their arguments unify
– at least one of the terms is a variable
– both are identical ground terms.

The rule graph for a rule base is a directed graph GR = (R,A) with



IV

– A set of vertices R, there is one vertice for each rule in the rule base.
– A set of ordered pairs A of vertices called arcs or arrows. An arc e = (x, y) is considered to mean

that the rule represented by the vertice x depends on the rule represented by y. Such an arc exists
for every rule dependency.

2.3 Usage Data and Prooftrees

Usage data is created by any query that is posed against the rule base. This query may have been created
as test for the knowledge base during its creation, as competency question during the specification or
sometimes during its use. The visualization is going to be better the more queries are available and the
more representative for the usage of the rule base these queries are. Please note that a query will normally
be posed to the rule base and a number of facts. It is common that the facts change between queries. For
example a knowledge base containing diagnostic rules for diseases will also contain facts desribing the
current patients. These facts will obviosly be changed between queries.

During the evaluation of a query the inference engine creates a prooftree forest. The prooftree forest
contains one prooftree for each result that was returned. The prooftree stores information about the rules
that where used in creating the result. The root node of a prooftree is always the query, its variables
bound to the result that has been returned. The children of this node are the rules that where directly
needed to prove the query. The children of these rules are again the rules needed to prove them. The leafs
of the prooftree are formed by the facts in the knowledge base. Due to the nature of the well-founded
semantics[14] used to evaluate F-logic the prooftree is not always a tree but may contain circles. A bit
more formally we can say that a prooftree is a directed graph GP = (V,A) with

– A set of vertices V . Each vertice can be understood as the application of one rule during the inference
process. There is also (partial1) function fr : V → R that gives the rule that was applied for a vertice
in the prooftree.

– A set of arcs A. An arc e = (x, y) is considered to mean that the application of a rule represented by
vertice x depended on the rule firing represented by y.

Usage data U is the multiset of all known prooftrees for a rule base: U = {GP,1, GP,2..., GP,i} and the
function fr defined earlier.

3 An Example Rule Base

We created a toy example that we will use throughout the paper to illustrate our visualization ideas. This
knowledge base consists of a number of rules for the diagnosis of faults in sewers. The rule base works on
facts representing a number of sewers, their properties and a number of observations for these. It contains
three rules representing mathematical relations between properties of sewers of different shapes. All other
rules are integrating data from the observations and diagnostic data inferred by other rules for high level
diagnosis and a priority classification. An example for the inferences that can be done with this rule base
is the following: One rule concludes that there is a high priority problem with a sewer if it is large and
has a large hole. Other rules are used to infer large sewer based on the throughput and large hole based
on the observations. One rule would be able to conclude the throughput based size and shape. All in all
the knowledge base for our example contains 15 rules, the ontology 40 concepts.
1 The prooftree also contains nodes that represent the “firing” of the query and the usage of facts



V

The usage data for this example is made up from 15 queries. For each query there is also a situation
description - a query setup. This setup contains the facts that describe a number of sewers, their properties
and some observations. From executing these queries we get 26 prooftrees that form the input to the
visualization tool. There are more prooftrees than queries because some queries return more than one
result.

4 High Level Knowledge Editors

Our example was created using a new version of Ontoprise’s ontology engineering program Ontostudio.
One purpose of this tool is to make ontology engineering more accessible for people that are not training
logicians but rather experts in the field that is to be modelled. Towards this goal it employs visual editors
that shield the user from some of the complexities of creating a knowledge base. In addition F-logic is
already an abstraction on top of the entities manipulated by the inference engine; it is translated before
any queries are processed. These two things conspire to make visualizing the knowledge base more difficult
because there is a considerable mismatch between the entities known to the user and the artifacts in the
knowledge base and the prooftrees. A visualization cannot be calculated directly on the entities known to
the user, because the semantics of the rule languages are not defined at this level. Which entities depend
on each other, how a query is answered is only defined through the translation to a normal logic program.
To do a visualization similar to the one proposed in this paper on the level of the entities known to
the user would mean in essense to create another inference engine that works at this level. We will now
further illustrate mismatch between user entities and knowledge base entities by looking at the handling
of mathematical relationships and inheritance.

Consider the relationship between the length of the sides of a rectangle and its surface area. It is
easily expressible in one equation that enables a human to calculate any of the three values provided
that the other two are known. Such a relationship is, however, not directly translatable into the rigid IF-
THEN structure of horn logic rules. The straightforward way to translate this into a logic programming
language is to create three rules, one for each property of the rectangle. Ontostudio allows the user to
specify mathematical relations and handles their translation into F-logic automatically and transparent
to the user (albeit using a mechanism a bit more sophisticated than the one described above). This of
course results in the knowledge base containing more rules than just the ones known by the user.

Another source of mismatch between the user view and the contents of the knowledge base is the
translation of F-logic into a normal logic program. We have already stated that some parts of the F-
logic that appear to the user as primitive operations are, in fact, realized by adding further rules to the
knowledge base. Consider these two rules and one fact:

IF anything(?X) THEN ?X is a stainless_steel_sewer
IF ?A is a steel_sewer THEN something(?A)
stainless_steel_sewer subconcept steel_sewer.

Its intuitively obvious that the second rule could depend on the first one. But for the inference engine this
connection is not visible, in particular after everything has been translated into a normal logic program.

isa_(?X,stainless_steel_sewer) <- anything(?X)
something(?A) <- isa_(?A,steel_sewer)
sub_(stainless_steel_sewer,steel_sewer)



VI

In Ontoprise’s inference engine the semantics of inheritance are realized by adding a number of axioms
to the knowledge base. These axioms are very generic rules that make these connections. An example for
an axiom would be: IF ?A is a ?Concept and ?Concept is a subconcept of ?Superconcept THEN ?A is a
?Superconcept. Again this leads to many rules being added to the knowledge base that should be kept
hidden from the user but that are indispensable for its functioning.

All in all we end with a knowledge base containing 54 F-Logic rules - up from the 15 (high level) rules
the user created. Such a large difference between the entities manipulated by the user and the contents
of a knowledge base is still uncommon in today’s knowledge engineering tools. We believe, however, that
with the increasing use of graphical tools for knowledge editing and more interest in knowledge acquisition
tools that can be handled by domain experts, this kind of problem will appear in more and more systems.
On the one hand it is true that rules are usually a more natural expression for knowledge than for
example assembler. On the other hand simplicity and runtime consideration must be taken into account
when designing rule languages. The knowledge artifacts that you would like to have from a usability point
of view are often not the same as the ones that can be handled easily and fast by an inference engine.
In the past trained knowledge engineers bridged this gap, translating everything they heard from the
domain experts into the logic language. In a future where domain experts are creating knowledge bases
with ever decreasing reliance on knowledge engineers more and more of this translation needs to be done
automatically.

5 Naive Rule Base Visualization

In the absense of a defined control flow or objects and their relationships, the most salient feature of rule
bases are the rules and their ”‘depends-on”’ relationships as defined in section 2.2. These relationships
show how the parts of the knowledge base work together to answer queries. This relationships forms a
directed graph that also forms the basis for our visualization. The nodes in the graph are the rules from
the knowledge base. We have used different colors to distinguish rules created and edited by the user
(blue nodes) from axioms (red nodes). Each node is labeled with the name of the rule it is representing.
The arcs between the nodes represent dependencies between these rules. A rule A is said to dependend
on rule B, if the head of B unifies with an atom of the body of A. In other words, the body of rule A
depends on the result of rule B. Rule names are not shown in the screenshots used in this paper, but can
be displayed in our program.

We start by showing a naive visualization of a rule base. This visualization just shows everything
contained in the rule graph as defined in section 2.2. We include this visualization technique for three
reasons: firstly, it provides the initial representation of the rule base that will be the subject of the
modifications described in the next sections. Secondly, by comparing the results of each transformation
to this naive visualization, we can easily illustrate its effects and show its advantages. Thirdly as part of
the motivation for our work, since this was our first attempt in rule base visualization whose limits made
us explore other possibilities.

Figure 1 depicts the naive visualization of the example described in section 3. In the figure we have
hidden the rule labels since these would clutter the picture. As you can see it is neither concise nor simple
representation. In particular the number of dependencies is much too large even for this simple example,
which contains just 54 rules. All in all we have 215 dependencies, most of which will never be used in
actual query processing.



VII

Fig. 1. Naive Visualization of the rule base example. Blue nodes represent rules created by the user and red nodes
represent axioms.

6 Rule Base Visualization

Our approach is based on two main assumptions. Firstly that by observing the usage of a rule base we
can identify which rules and which dependencies are important and should be highlighted. Secondly that
it is possible to visualize the rule base at the user level, even though the rules known to the user have
been transformed and extended in order for the inferences to work.

In our approach we combine three different methods. The first one utilizes usage data known for a
given rule base to find and highlight frequently used rules and dependencies. The second one reconstitutes
entities that have been split into many parts Finally the third one removes all axioms that have been
added to the knowledge base. The second and third method also rely on the usage data in order to best
perform their function. In the following we describe each of these methods in more detail.

6.1 Usage Data

As mentioned in section 2.3, the usage data consists of a number of prooftrees from queries posed to the
rule base. A visualization of our example rule base enriched with this usage information is displayed in
Figure 2. The rule dependencies that have actually been used in tests are displayed as bold black lines,
the other dependencies are shown in grey. In addition the rule nodes are scaled depending on how often
a rule has been used in a prooftree.

More formally an arc ar = (rx, ry) from the rule graph is displayed in bold iff there is an arg ap =
(nv, nw) between nodes representing the firing of these rules fr(nv) = rx, fr(nw) = ry in a prooftree



VIII

Fig. 2. Rule graph combined with usage data.

Gp,u = (Vp,u, Ap,u), ap ∈ Ap,u that is part of the usage data Gp,u ∈ U . The size of a rule node vx is a
function of the number of prooftree nodes vy ∈ Vp,z, Gp,z = (Vp,z, Ap,z) that represent the firing of this
rule fr(vy) = vx. The function we use to determine the size of a vertex emphasizes the differences between
rules used seldomly at the expense of usage differences between often used rules. For example a rule used
once is displayed with double the diameter of a rule that was never used. The diameter of a rule used 40
times is only slightly larger than that of a rule used 30 times.

Figure 2 shows the visualization of our example rule graph and its usage data. The usage data is from
15 queries that resulted in 26 prooftrees. From the 54 rules and 215 dependencies present in the rule base,
33 rules and 83 dependencies are used in these tests and highlighted. The main advantage of this method
is its ability to draw user’s attention to central elements of the rule base. This way we have reached a
better representation without reducing the number of rules and dependencies. This way of displaying a
rule base may be applied in some cases, where displaying all rules and relationships is required - such as
validation or debugging tasks.

This visualization still contains many dependencies and rules, in particular rules unknown to the user
of the knowledge engineering tool. It is still hard to get a complete overview of the rule base from this
picture. It gets a bit clearer when we prune everything that has not been used in any of the tests as
shown in Figure 3. This way we arrive at a statistical representation of a rule base, only showing what
happened during the tests. Even this representation, however, fails to capture the interaction structure
of the rules created by the user. It seems to show more relations between user rules than where actually
used. Consider this example: we have the user rules A,B,X and Y, there is one axiom H. Now assume that
there is a number of prooftrees containing the dependencies A→ H → B (a prooftree node representing a
firing of A depended on one representing a firing of H etc.) and a numer of prooftrees with X → H → Y .
In the visualization we then get arcs from A and X to H and from there to B and Y - leading the user
to falsely believe that A may depend on Y or X on B. Due to the very generic nature of the axiom



IX

Fig. 3. Rule graph combined with usage data, pruned.

rules such things happen very frequently. Its evident in Figure 3 that shows two big red nodes close to
the center of the picture. These vertices represent important axioms related to the class hierarchy and
indirectly connect a very large number of rules.

6.2 Rejoining User Entities

Entities created by the user with the knowledge engineering tool can be translated to multiple F-logic
rules in the knowledge base - we described this already in section 4. This translation process leads to
a knowledge base containing more than one rule for each user entity, unnecessary cluttering the display
and making it harder to see the interaction between the rules created by the user.

We deal with this challenge by rejoining all rules that where created for one user entity, the depen-
dencies are kept during this transformation. In detail: a user entity can be understood as a set of rule
vertices, a subset of the vertices in the rule graph. All user entities are disjunct. For each user entity we
remove all its nodes from the rule graph and add one new vertice. For all edges ending in one of the
removed nodes we add one that starts at the same node but ends in the new node. We do the analog for
edges starting in one of the removed nodes. Edges beginning and ending in vertices of the same user entity
are not included in the transformed graph. We do an analog transformation on all prooftrees, replacing
nodes that represent the firing of rules that are part of a user entity. This transformation of the usage
data prooftrees allows to combine the new rule graph with usage data using the techniques described in
the previous section.

6.3 Hiding Axioms

As explained in section 4, we distinguish between user rules -created by the user through the rule editor-
and internal rules - created automatically by the system. These internal rules or axioms are indispensable
for the correct functioning of the inference engine but could confuse the user.



X

Fig. 4. Removed Axioms: this simplified graph contains all relevant parts of the rule base.

Hiding the axioms means that the nodes corresponding to them are deleted from the graph. The
path between two user’s rules traversing several axioms is replaced by a single edge between the nodes
corresponding to them. This is done by an algorithm that examines the axioms one at a time. In a
first steps all prooftree nodes representing the firing of this axiom are removed from the usage data
prooftrees. The dependency edges are preserved, meaning that all prooftree nodes that depended on the
deleted node,are connected to the nodes the removed one depended on. Assume a prooftree contains
the path X → A → B → Y and Z, where A and B are nodes representing the firing of axioms and
B → Y and Z means that the firing of B depended on both Y and Z. Assuming that we process the
axioms in alphabetical order this will first be transformed to X → B → Y andZ and then to X → Y andZ.
We then proceed to remove all axioms and their incoming and outgoing edges from the rule graph. Finally,
in the last step we add edges to the rule graph. We ensure that for each prooftree edge between nodes
representing the firing of a rule A and a rule B the rule graph contains an edge between A and B.

By transforming not the rule graph directly but first the prooftree we tackle the problems described
in the end of section 6.1. There we introduced two prooftree parts, A → H → B and X → H → Y ,
where H was an Axiom. Had we just transformed the rule graph, deleted the axiom an reconnected the
incoming and outgoing edges we would have gotton A→ B and Y and X → B and Y in the rule graph.
By doing the transformation with the algorithm described above we get A → B and X → Y - a better
representation of the usage data. This problem is, however, only solved with respect to deleted nodes.
The rule graph can still only show paths of length one, longer paths that intersect in one rule node can
still not be differentiated. To tackle this challenge we plan plan to give the user the option to choose a
query from the usage data and to have it highlighted as path through the rule base.

To demonstrate the effect of this method, we have hidden the axioms present in our rule base example
as shown in Figure 4. Axioms - formerly represented as red nodes- are not part of the graph any more.
The obtained graph contains only 15 rules and 18 dependencies, down from the original 54 rules and 215
dependencies. The interaction patterns between the user rules are now readily apparent. Even without
any more information about the rule it should be possible to see the overall structure of this diagnostic



XI

rule base: multiple “layers” of rules that integrate data about the sewers and outputs of other rules into
higher level diagnosises.

After combining the three methods, we obtained a visibly better graphical representation which in-
cludes just the relevant parts of the rule base and highlights the frequently used rules and dependencies.
Such representation is undoubtedly easier to manipulate and more appropriate to the user’s task.

6.4 Implementation

The prototype for of this visualization system is implemented as a standalone Java application. For the
actual graph we use JUNG2 - Java Universal Network/Graph Framework. For the layout of the graphs we
use the Fruchterman-Reingold algorithm[13] in an implementation that is part of the JUNG framework.
Please note that Figure 4 is not directly generated through this layout algorithm. For this picture we
moved a few nodes in order to better show the overall structure of the rule base. Moving of nodes is also
supported by the JUNG framework.

Our program is of now not integrated with the ontology engineering tool. Currently it utilizes log files
containing the prooftree forests for queries and a file representing a serialization of the rule graph. Runtime
for this application has so far been unproblematic. The usage data for the example described in this paper
consists of approximately 5000 prooftree nodes, around 600KB. For this example everything, i.e. starting
java, starting the application, reading the files, applying the transformations, layouting and displaying the
graph, is done in less than ten seconds. None of the algorithms described here is computational expensive
and most could easily run in paralell, hence this kind of approach should scale easily.

7 Related Work

To our best knowledge no approach that uses usage data in the form of prooftrees for the visualization of
rule bases exists. We are also not aware of any visualization approaches that address the question posed
by high level knowledge engineering tools.

There exist a number of publications that address the questions of visualizing knowledge bases and
rule inference mechanisms. This research field is not a modern one. It has been round since the days
of early expert-systems. Graphical representation of rule-based inference has been necessary for decades
to deal with the first large knowledge bases [21]. Today, several visualization approaches exist, which
support the user understanding complex and formal knowledge models.

One of the most used knowledge-modeling tools is Protégé, which offers the possibility of modeling
and editing Ontologies and knowledge bases. The Protégé environment may be extended by plugin com-
ponents to add new functionalities [28]. Jambalaya [23] and TGVizTab [16] are two visualization plugins
for Protégé, which aim at helping users to visualize Ontologies and knowledge bases by interactively
navigating graphs. In these graphs, classes and instances are represented as nodes, relationships among
them as edges. These visualization tools include some techniques, such as zooming, layout algorithms
and edge-labeling to help the user manipulating large graphs and complex knowledge models. The tool
presented in this paper differs from these tools in visualizing rules and their dependencies instead of the
classes and instances.

There are some systems used to visualize Prolog clauses, like the tool for visualizing Prolog programs
presented in [15]. This tool -implemented in the scope of Sotware Visualization- allows displaying conjunc-
tions and disjunctions among predicates as well as if-then-else clauses using trees or block structures. In
2 http://jung.sourceforge.net/



XII

this way, it is possible to visualize rule inference and dependencies among predicates. However, reducing
the complexity of the graphical representation has not been considered in this work.

Visur/Rar is a second visualization system used for visualizing Software projects in Prolog and Java.
A detailed description of the system and its application in Software Visualization can be found in [9][25].
The system has been applied to knowledge bases represented in XML format. Using dependency graphs,
it enables the visualization of the prooftree of a query, which formulates a specific task [27]. The authors of
[27] have opted to display the rules required to answer the query rather than showing all rule dependencies.
Moreover, they have focused on the use of the available XML representation and its transformation into
a graphical one, diverging from our main topic, which is the visualization of rule dependencies in a clear
and understandable manner.

Further visualizations of rules exist within the data mining community [6][10][17][24][26]. These ap-
proaches visualize association rules in order to facilitate the analysis of these rules and the extraction
of the most important information from them. They also face the problem of a large set of rules from
which a few interesting ones need to be selected. These approaches, however, are mostly concerned with
the problems posed by the statistical nature of association rules. The data used for the creation of the
visualization is also very different.

8 Conclusion and Future Work

We have presented the methods and their prototypical implementation for the visualization of rule bases.
Results from experiments with toy examples look promising. We now plan to include our system in a
knowledge engineering tool and to evaluate it in the context of a large knowledge acquisition project.

Many enhancements for the presented system are conceivable. Besides the obvious such as nicer graph-
ics, zooming capabilities or better integration with the ontology engineering tool these are in particular:
the inclusion of facts, integrated visualization of inference processes and support for fault localization. It
is obvious that it would be desirable to have a visualization that includes both the facts and the rules
from the knowledge base, albeit it is less clear how that would look like. The rule graph could also be
adapted to show the evaluation of a query as a path through this graph - either by animating it or by
highlighting the rules and dependencies that are involved. Such visualization of the inference process
could further aid the user in understanding a rule base. Finally the system could work as a visual aid
for fault localization by overlaying the paths through the rule graph taken by failed and successful test
queries.

References

1. J. Angele. How to write f-logic programs. Technical report, Ontoprise GmbH, 2005.

2. Jürgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Michael Kifer Pascal Hitzler, Reto Krummenacher,
Holger Lausen, Axel Polleres, and Rudi Studer. Web rule language (wrl). Technical report, University of
Karlsruhe, 2005.

3. Jürgen Angele and Georg Lausen. Ontologies in f-logic. In Handbook on Ontologies, pages 29–50. Springer,
2004.

4. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin, S. McIlraith,
D. McGuinness, J. Su, and S. Tabet. Swsl-rules: A rule language for the semantic web. Technical report,
Semantic Web Services Language Committee of the Semantic Web Services Initiative, 2005.



XIII

5. Harold Boley. Knowledge bases in the world wide web: A challenge for logic programming. In Koen De Boss-
chere Paul Tarau, Andrew Davison and Manuel Hermenegildo, editors, Proceedings JICSLP’96 Post- Confer-
ence Workshop on Logic Programming Tools for INTERNET Applications, 1996.

6. D.Bruzzese and P.Buono. Combining visual techniques for association rules exploration. In Proceedings of
the working conference on advanced visual interfaces, pages 381 – 384, Gallipoli, Italy, 2004.

7. Stefan Decker, Dan Brickley, Janne Saarela, and Jürgen Angele. A query service for rdf. In QL, 1998.
8. Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer. Ontobroker: Ontology based access to

distributed and semi-structured information. In DS-8, pages 351–369, 1999.
9. D.Seipel, M.Hopfner, and B.Heumesser. Analyzing and visualizing prolog programs based on xml represen-

tations. In Proceedings of the 13th International Workshop on Logic, 2003.
10. Usama Fayyad, Georges Grinstein, and Andreas Wierse. Information Visualization in Data Mining and

Knowledge Discovery. Morgan Kaufmann, 2001.
11. Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer. Ontobroker: The very high idea. In

FLAIRS Conference, pages 131–135, 1998.
12. J. Frohn, R. Himmeroder, P. Kandzia, and C. Schlepphorst. How to write f-logic programs in florid: A tutorial

for the database language f-logic. Technical report, Institut Für Informatik, Universitat Freiburg, Germany,
1996.

13. Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. Software
- Practice and Experience, 21(11):1129–1164, 1991.

14. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):620–650, 1991.

15. C.A.McK. Grant. Software Visualization in Prolog. PhD thesis, University of Zurich, 2001.
16. H.Alani. Tgviztab: An ontology visualisation extension for protégé. In In Proceedings of Knowledge Capture

(K-Cap’03), Workshop on Visualization Information in Knowledge Engineering, Sanibel Island, Florida, USA,
2003.

17. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 1st edition,
2000.

18. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike Dean. Swrl: A
semantic web rule language combining owl and ruleml. Technical report, W3C Member submission 21 may
2004, 2004.

19. Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel. A realistic architecture for the semantic web.
In RuleML, pages 17–29, 2005.

20. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and frame-based lan-
guages. J. ACM, 42(4):741–843, 1995.

21. J.W. Lewis. An effective graphics user interface for rules and inference mechanisms. In Conference on
Human Factors in Computing Systems Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 139 – 143, Boston, Massachusetts, United States, 1983.

22. Massimo Marchiori and Janne Saarela. Query + metadata + logic = metalog. In QL, 1998.
23. M.A.Storey, M.Musen, J.Silva, C.Best, and N.Ernst. Jambalaya: Interactive visualization to enhance ontology

authoring and knowledge acquisition in protégé. In Workshop on Interactive Tools for Knowledge Capture,
2001.

24. M.Burch, S.Diehl, and P.Weißgerber. Visual data mining in software archives. In Proceedings of the 2005
ACM symposium on Software visualization, pages 37 – 46, 2005.

25. M.Hopfner, D.Seipel, and J.W.von Gudenberg. Comprehending and visualizing software based on
xml–representations and call graphs. In Program Comprehension,11th IEEE International Workshop on
Logic, pages 290– 291, Tubingen, Germany, 2003.

26. M.Kreuseler and H.Schumann. A flexible approach for visual data mining. In IEEE Transactions on Visual-
ization and Computer Graphics, volume 8, pages 39 – 51, Germany, 2002.

27. Dietmar Seipel, Joachim Baumeister, and Marbod Hopfner. Declarative querying and visualizing knowledge
bases in xml. In 15th International Conference of Declarative Programming and Knowledge Management
(INAP-2004), pages 140–151, 2004.



XIV

28. M.A Storey, R.Lintern, N.Ernst, and D.Perrin. Visualization and protege. In Proceedings of 7th International
Protege Conference, 2004.

29. Guizhen Yang and Michael Kifer. Well-founded optimism: Inheritance in frame-based knowledge bases. In
CoopIS/DOA/ODBASE, pages 1013–1032, 2002.


